Quality Function Deployment (QFD): An Effective Technique
For Requirements Acquisition

Tuyct-Lan Tran and Joseph S. Sherif
Jet Propulsion Laboratory, Software Assurance
Cadlifornia Institute of Technology, Pasadena, CA 91109 USA

Abstract

A general and accepted understanding of
how to capture requirements, alocate or
flow-down top-level requirements,
verify and validate lower-level
requirements, is at best sought in theory
but not rigorously sought in practice.
More often than not, the customers (or
users) are blamed for not properly
articulating their requirements or even
understanding their own needs.
However, the problem is deeper than
that, and it involves not only the
customers but also the system analysts or
engineers, and designers as well.

This paper puts forward Quality
Function Deployment (QFD) as an
effective tool for the acquisition of
requirements. QFD when applied to a
project will: (1) improve
communications between customers,
system engineers, programmers and
testers and thus contribute to project
success, (2) enable alignment between
customer requirements, product (or
design) requirements, and cost
requirements (or constraints), by
explicitly correlating key product
requirements to customer needs and
expectations, (3) improve the
management of requirements through
rigorous prioritization, built-in
traceability, and explicit tradeoff
analysis, and (4) facilitate reenginecring
of some key processes or subprocesses,
through focus on key performance
requirements .

Introduction

Requirements engineering is one of the
most crucial parts of the development
process of any project, yet it is the least
supported or least understood part due to
the following reasons. (1) requirements
are particularly difficult to specify and
analyze since they may be derived from
the needs of many different customers or
people; (2) difficulty to achieve a
complete understanding of the
application domain within which the
proposed system will function, as
discussed by Rubenstein and Waters [6];
and (3) al relevant aspects of a proposed
system may be difficult to capture in a
single paradigm. This is due to the fact
that each paradigm is embodied in a
single requirement language that may
have. its own limitations to express some
important requirement.

The primary output of requirements
engineering is a requirements
specification that must be internally
consistent; consistent with other existing
documents; correct and complete with
respect to satisfying users needs;
understandable to users, designers and
testers; and capable of serving as a basis
for both design and test [4]. Hsia, et. a.,
[3] also assert that the quality of a
product is only as good as the process
that creates it; and that requirements
engineering is one of the most crucial
steps in this creation process. Hsia
describes requirements engineering as
the disciplined application of proven
principles, methods, tools, and notations
to map a proposed system’s intended
behavior and Its associated constraints.
This mapping includes: (1) identification
and documentation of user needs, (2)
development of a requirements

document that describes how to satisfy
user needs, (3) analysis and validation of
the requirements document and (4)
means to support the evolution of user
needs.

Requirements Acquisition

‘I"he principal problems in Requirements
Acquisition include difficulties in: (1)
agreement about requirements
statements; (2) intra-team
communication; (3) managing change,
i.e., maintenance and evolution of initial
requirements and identifying
inconsistencies between initial and
refined requirements; (4) formalism and
abstraction in capturing objective reality,
since constructed reality is, after al, a
result of interactions among participants
in the requirements process.

Curtis, et. al [2] identified two
significant problems in requirements that
may cause maor difficulties during the
development of projects. acquisition of
accurate problem domain knowledge,
and volatility of requirements. Any of
these problems will contribute to low
quality projects, budget overrun and
schedule dlip.

Lubars et. al., [5] assert that the
traditional way of requirements capture
by prose-like unstructured, obscure and
somewhat ambiguous statements is no
longer effective; and they recommend
that new techniques and tools for
requirements engineering should be
used.

Tran et. al., [7] describe successful
projects as those that meet valid
functional requirements as well as
users expectations; adhere to the
spirit of process methods that
promote rigor, discipline and
continuous refinement; and are
accomplished on time and within
budget. They assert that among the
key attributes exhibited by
successful projects are the constant
visibility of requirements, and the
commitment of sponsors as well as

-2-

users to this same set of governing
requirements.

Quality Function Deployment (QFD)

To date, Quality Function Deployment
(QFD) is the only technique discovered
by the authors that facilitates the
concurrent capture of problem domain
knowledge and solution domain
knowledge without requiring formalism,
and yet facilitates requirements
validation -- requirements validation
from the customer’s perspective..

Y oji Akao introduced QFD to the United
States in October 1983 in a short article
in the journal Quality Promess [§].

The goal of QFD is to deploy the “voice
of the customer” (VOC) throughout the
product’s entire technical specifications
and resource requirements. This VOC is
intended to represent the customer’s
viewpoint of the customer’s problem or
need. Detailed matrices listing the
customer’s rated "whats" (or
expectations) are correlated with the
“hews” , to show how each customer
requirement will be met, and which
team(s) will be responsible for each
performance component [1). This
systematic technique of listening to the
voice of the customer, and ensuring the
traceability of product design (or,
solution domain) to the customer’s
requirements are the most crucial aspects
of QFD in delivering high quality
products.

The customer-requirements planning
matrix is the most important element of
the QFD implementation., Customer
requirements (or, customer attributes)
are customer needs in customer’s terms
and language. The technical features are
the de sign attributes expressed in the
language of the system engineer,
designer, and developer. These features
must be measurable, since the output
will be controlled and compared to
objective targets. Relating the customer
attributes (or customer requirements) to
the technical features (also referred to as

product characteristics or performance
requirements throughout this paper) will
show the strength of the relationship
between them; and show whether the
attributes are addressed fully and
properly or whether the final product
Wc,lleld have difficulty in meeting customer
needs.

QFD and Software Development

Since 1980 several companies in Japan,
Europe and the United States have used
Total Quality Management (I’QM),
concurrent engineering and QFD
techniques for software development, at
least for the first phases of software
development (software requirements and
specifications).

More specifically, CSK of Japan has
been using QFD for software since 1985.
Figure 1 shows the steps in their QFD
activities for developing the company’s
software [7]. These steps include: (1)
collecting customer requirements (from
original interview data and
brainstorming sessions by a cross-
functional team); (2) generating the
quality requirements (by identifying the
several levels of product characteristics
that correlate with the customer
requirements (or “the demanded
quality”); (3) generating the function-
based requirements (by exploding the
system functions into severa levels of
functional requirements); (4)
establishing the planned quality.

This fourth step consists of: (@)
extracting and analyzing selected
parameters from the quality
requirements, (b) deciding which
parameters are most strongly correlated
with the demanded quality and become
the product's “quality characteristics’,
(c) establishing a standard value for each
quality characteristic (also referred to as
technical feature, or product
characteristic, or performance
requirement, throughout this paper), (d)
deploying these quality characteristics
into processes, and (e€) implementing
these processes in software development.

CSK's next major activities of the QFD
technique arc as follows: (5) analyzing
the relationships between the impact of
the i mplemented soft ware on customer
demands (or customer requirements) and
the quality characteristics, (6) capturing
the results of this evaluation (by rating
customer satisfaction for each customer
requi rernent or demand); (7) analyzing
the relationships between the deployed
software processes and the selected
quality characteristics, (8) refining the
planned-quality chart, for the next
development effort. At present, CSK is
developing a QFID support system using
artificial intelligence for improving the
company’s software development
activities, efforts, and productivity.

Drawing from the QFD work performed
by the Software Assurance engineers at
JPL, which includes some adaptations of
CSK's concepts, the authors believe that
developing a QFD support system that
integrates software techniques such as
data flow diagramming and object-
oriented development wi 11 be key to
dramatically improving JPL software
development activities, and to delivering
quality products (i.e., products that meet
customer needs, within schedule and
budget).

Discussion of QFD Benefits

QFD has become an effective and
important investment for many
companies because it is the cornerstone
for implementing concurrent engineering
and Total Quality Management (TQM).
In support of TQM's goal for
maintaining or improving quality, cost,
procedures and systems, the QFD
technique, indeed, provides an explicit
mechanism for capturing and
incorporating the voice of the customer
early into the production process,
whether at pre-project, conceptual
design, or high-level design phase; i.e.,
into the front -end of the development
lifecycle where that voice should be the
sharpest.

OFD can also be part of business
reengineering, in promoting radical
business improvement. In many
software-intensive project environments,
while the concept of customer focus
varies from ceremonial attention being
paid to it, to having some customer
representatives participate on review
boards, it is often done from the
engineering viewpoint, rather than from
the customer viewpoint. QFD promotes
the outside-in approach, rather than the
inside-out approach, as it attempts to
identify the value-adding features of the
software-intensive product. As QFD
assigns priorities or weights to product
features, some of these could represent
radical improvements for both the
product and the associated process.
W hen reengineering could b e
accomplished through focusing on
essential design parameters, and by
concentrating on those that link back to
the customer’s true needs, reengineering
would be less intrusive to organizations
and more likely to succeed.

With respect to customer fulfillment, the
benefits of QFD application to software
projects are that: (1) customer needs are
Integrated into product design upfront,
and without generating a lengthy or
unrealistic customer requirements
document; (2) product requirements can
be better fine-tuned via iterative
specification of performance
characteristics and of the relationships
between these performance
characteristics and the customer needs;
(3) all product-requirements specified
are measurable and testable.

With respect to radical changes in
software development-process, the
advantage of QFD is that it eliminates
the typical productivity drains associated
with requirements management. (1) The
capture of requirements is tremendously
more cost-effective, because it is faster
and because of more accurate customer
requirements and product requirements.
Faster and more accurate customer
requirements, by including an
experienced customer or strong customer

advocate in the QFD team. Faster and
more accurate product requirements, by
including in the QFD team product
designers and technologists who can
listen to customers. The mapping of
product requirements to customer
requirements is more consistent in
degree. of expressiveness through
quantified relationships. Consequently,
errors in requirements capture,
requirements analysis and design are
fewer, and there are fewer design
changes late in development or
production -- which in turn reduces
overall product cycle time and project
development costs. (2) Cost planning
becomes more specifically tied to
product features, and in explicit ways.
The allocation of performance
requirements to one or more partitions of
the overall product provides the
necessary link to the generation and
costing of a product-oriented work
breakdown structure (WBS). (3) The
technical decision-making process
becomes more explicit, thereby
contributing to more participation from
al development team members as well
as to better team focus. Tradeoff
analysis, indeed, is more explicit and
concentrated on specific, potentially-
conflicting design features or
bottlenecks. As control points are
clarified, consensus-building becomes
easier, and an informed balance between
quality and cost is made. (4) The
documenting and tracing of requirements
become side-products of anaysis and
desigu, and do not generate reams of
post-facto, error prone, and expensive
documents. (5) Finally, the coupling of
higher -integrity requirements (discussed
above)) with a more explicit technical
decision-making process, and with
minimum documentation-related
distractions, enables the project to avoid
problems, such as erroneous or
untestable requirements, requirements
volatility, and gold plating.

It has been reported that although only 6
percent of project cost and 10 percent of
project duration are spent in the

requirements phase, it costs about 10
times more to repair a defect during
implementation than during the
requirements phase, and it costs
between 100 and 200 times more during
mai ntenance. Historical project-
performance records also show that 30-
to-50% of the cost of building a
hardware-software system are spent in
finding and correcting defects. For
certain application areas, about 60-90%
of software failures observed are said not
to be caused by code errors, but are
attributed to requirements errors. These
requirements-related problems, when
coupled with the Total Quality
Management (TQM) goals of increased
product quality and lowered cost,
suggest that the area for highest-return
on quality investment is in the
prevention of defects with greatest-
impact (or greatest amplification-rate)
potential; i.e., a the requirements level
and at the front-end of the development
life-cycle. This front-end could mean
preproject phase, prototyping phase,
exploratory or conceptual development
phase.

QED targets both the front-end of the
development process and the product
life-cycle itself, for improvement (either
small or dramatic). By simultaneously
capturing customer requirements,
product requirements and the results of
rigorous analysis from a knowledgeable
team, the set of QFD charts becomes the
repository for product plans and
specifications. This repository
constitutes the single source for
configuration control and requirements
visibility, for use and referencing
whether by management, by
development team, or by customers.

Lastly, an important contribution of
QFD to people management, less evident
in terms of cost savings, is that it acts as
apowecrful catalyst for team building and

for infusing technical excitement into the

consensus building process. This “soft”
benefit becomes sharper and more
critical, when one considers that the
QFD team could be the reengineering
team or vice-versa.

Conclusion

QFD is an effective and promising
technique in alleviating the problems
associated with the early phases of
requirements and specifications. From
the TQM perspective, QFD is an
excellent avenue for specification of the
“right product” at the right price. QFD,
indeed, is a cross-functiona tool that
enables organizations to focus on key
customer demands and develop
appropriate responses to those needs.
When these responses involve dramatic
changes in some aspects of product
performance, QFD also becomes a
technique for reengineering. Most
critically, QFD systematizes rigor in
requirements activities, while
maintaining relatively low
documentation and requirements-tracing
costs. Lastly, the authors would like to
conclude that, although QFD has been
accepted as a useful tool for product
planning, its most unique potential as a
catalyst for parameter design of
infor1 nation systems can be fully realized
only after a QFD support system is put
in place, which integrates software
development methodol ogies.

Collecting Requuements
(onginal dala)

L N

; Classilication l

Quality Function
Requirements Requirements

- 'ﬁ,_‘_*,_._-, - = ____>v~ -

prepanng demanded
Quality deployment chant ———

prepanng function
system chart

isi levet 2ndi tievel At level
tunction 1uhc!loh ‘ function

1s11 llevel
functlon

2ncl level Jrd level 1
'unchon funcl-on J

L_

L

] _

i

establishing
planned quality

B

N N
Quality huncvon
charactensics requirements
Y

IR

N _,_4 I S
standarg
values X xx

Glé

Figure 1. Steps in QFD Activities

extracingandarranging
Quality charactenstic s

——]

preparing
Qualily chan

eslablishing
standard values

¥

T T

deployment
INlo processes

[

implementing

software development

analysis of relationship
between evaluation results
and quality characleristics

T

results
evaluation

analysis of relationship
10 process €valuation

¥

apphcation to
next development

REFERENCES Product ivity Press, Cambridge,
MA. 1990.
{1} Clemmer, J. and B. Sheeby, Firing

in . Irwin,
Homewood, Jil, 1992

[2] Curtis, B., Krasner, H., and N.
Iscoe, “A Field Study of The
Software Design Process for Large
Systems,” Comm, ACM, 31,11,
pp. 1268-1287, 1988.

[3] Hsia, P,, and A, T. Yaung,
“Another Approach to System
Decomposition: Requirements
Clustering,” Proc, The Twelfth
Annual Int'l Computer Sgig ware

and Apphganons Conference
Chlcago ILL, pp.
75-82, 1988

[4] Hsia, P., Jayara, Jan, S., Gao, J,
King, D., Toyoshima, Y., and C.
Chen, "Formal Approaches to
Scenario Analysis,” IEEE Software
11,2, pp. 33-41,1994.

{S]Lubars, M., Potts, C., and C.
Richter, “A Review of The State of
The Practice in Requirements
Modeling,” Proc, IEEE Int. Symp.
Eng., pp. 2-14, San
Diego, CA, January 4-6, 1993.

[6] Reubenstein, H. B., and R. C.
Waters, “The Requirements
Apprentice: Automated Assistance
For Requirements Engineering,”

IEEE Trans. on SE, 17, 3, pp.226 -
240, 1991.

[7] Tran, T. L., Lee, S.,and J. S.
Sherif, “The Network Operations
Control Center (NOCC) Upgrade
Task: Lessons Leared,” TDDA
Progress Report Number 42-118,

NASA.JPL., pp. 160-168, 1994.

[8] Yoshizawa, T., Togari, H., and T.
Koribayashi, "QFD, Integrating

Lustomer Requirements 1nto
Product Design, (Akao, Y. editor),

7.

